BIOMETRICS 0, 1-3 DOI: 0000-0000-0000

 ${\rm January}~2023$

Title here

Author 1

Department of YYY, University of XXX $\,$

*email: abc@def

and

Author 2

Department of ZZZ, University of WWW

*email: djf@wef

SUMMARY: The text of your summary. Should not exceed 225 words.

KEY WORDS: keydictionaryword.

1. Introduction

Your text comes here. Separate text sections with

2. Section title

Text with citations by Heagerty et al. (2000), (Pepe, 2003).

2.1 Subsection title

as required (Hoerl and Kennard, 1970; Zou and Hastie, 2005). Don't forget to give each section and subsection a unique label (see Sect. 2).

Paragraph headings. Use paragraph headings as needed.

2.2 Equations

Here is an equation:

$$f_X(x) = \left(\frac{\alpha}{\beta}\right) \left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}; \alpha, \beta, x > 0$$

Here is another:

$$a^2 + b^2 = c^2 (1)$$

In line equations: $\sum_{i=2}^{\infty} \{\alpha_i^{\beta}\}$

3. Figures and tables

3.1 Figures coming from R

Normal figure embedded in text.

Warning in plot.formula(runif(25) ~ runif(25)): the formula 'runif(25) ~
runif(25)' is treated as 'runif(25) ~ 1'

[Figure 1 about here.]

3.2 Tables coming from R

```
print(xtable::xtable(head(mtcars)[,1:4],
caption = "Caption centered under table", label = "tab1"),
comment = FALSE, timestamp = FALSE, caption.placement = "top")
```

[Table 1 about here.]

Table 1 shows these numbers. Some of those numbers are plotted in Figure ??.

head(mtcars[,1:4])

##	mpg	cyl	disp	hp
## Mazda RX4	21.0	6	160	110
## Mazda RX4 Wag	21.0	6	160	110
## Datsun 710	22.8	4	108	93
## Hornet 4 Drive	21.4	6	258	110
## Hornet Sportabout	18.7	8	360	175
## Valiant	18.1	6	225	105

References

- Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent roc curves for censored survival data and a diagnostic marker. *Biometrics* **56**, 337–344.
- Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics* **12**, 55–67.
- Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction.

 Oxford University Press.
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

 Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301–320.

Received Sep 2023

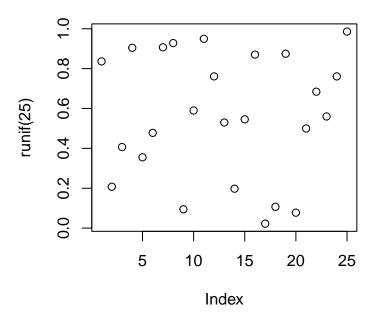


Figure 1. Output from pdf()

 ${\bf Table~1}\\ {\it Caption~centered~under~table}$

	mpg	cyl	disp	hp
Mazda RX4	21.00	6.00	160.00	110.00
Mazda RX4 Wag	21.00	6.00	160.00	110.00
Datsun 710	22.80	4.00	108.00	93.00
Hornet 4 Drive	21.40	6.00	258.00	110.00
Hornet Sportabout	18.70	8.00	360.00	175.00
Valiant	18.10	6.00	225.00	105.00